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The threshold of excitation and the wave numbers of parametric waves on the surface 
of a layer of viscous incompressible liquid undergoing harmonic vibrations along a 
vertical axis are determined for an equilibrium temperature gradient. 

We consider a horizontal layer of an incompressible liquid with a free upper boundary, 
bounded below by a solid isothermal plane maintained at a constant temperature 80. A Car- 
tesian coordinate system is chosen so that its x,y plane coincides with the unperturbed sur- 
face of the liquid, and its z axis is vertical. The layer moves vertically with a frequency 
m according to the law acosmt, where the amplitude of vibration a < i. 

In the reference system fixed in the layer the convective equations in the Boussinesq 
approximation are written in standard form [1-3] with the effective force of gravity 

~(1 -- n cos ~), (1) 

where q = a~2/g is the dimensionless amplitude of modulation, and ~ = {0, O, --g}. 

The uniform effective force (i) does not disturb equilibrium, giving rise only to pres- 
sure pulsations. Then the equilibrium conditions are 

g 2 

Here the pressure p and the temperature T are measured from their values at the surface, and 
G = 8o/h, where h is the thickness of the layer. 

To investigate the stability of this equilibrium we introduce perturbations of the ve- 
locity, temperature, and pressure: 

~ o + P ;  r~Oo+,'; ~-~po+p' 
and take as units of length, time, frequency,.pressure, and temperature (~/og) I/2, (~/0ga) ~/~, 
(pga/e),/~ (~g/0)I/~, (~pg),/2, and G(e/pg) I/2, respectively. Omitting primes,weobtainthe 
following system of linearized equations for the perturbations: 

where 

I ~ - = - - v p - k - T v  v+  e ,  

{ O~ I 0 
C3) 

A = --1 (~3/e~g)'/4, q = 6~(~/eg) ' 2 ,  P = A ,  v =  {u, v, w}. 

Assuming t h a t  t h e  d i s p l a c e m e n t  ~ o f  t h e  s u r f a c e  from i t s  e q u i l i b r i u m  p o s i t i o n  i s  s m a l l ,  
we o b t a i n  t h e  f o l l o w i n g  e q u a t i o n s  f o r  z = 0 [ 3 ] :  

04 
Ot 
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p = 

O_u_u Ow = O, Ov O-Y-~ = O, 

az + ax  & + OV 

; + 7  0-7 

(4) 

Assuming that the temperature of the free surface is maintained constant, the tempera- 
ture perturbations vanish at the surface, and to first-order terms in ~ we have [2] 

= ~. (5)  

On the bottom, i.e., for z =-H, where H is the dimensionless thickness of the layer, we have 

u = 0 ,  v = 0 ,  ~ = 0 ,  ~ = 0 .  (6) 

T a k i n g  F o u r i e r  t r a n s f o r m s  w i t h  r e s p e c t  t o  t h e  v a r i a b l e s  x and y ,  and t h e  L a p l a c e  t r a n s -  
fo rm w i t h  r e s p e c t  t o  t h e  t i m e  t ,  e l i m i n a t i n g  t h e  x and y c o m p o n e n t s  o f  t h e  v e l o c i t y  and p r e s -  
s u r e ,  and u s i n g  t h e  f a c t  t h a t  t h e  p e r t u r b a t i o n s  o f  v e l o c i t y  and d i s p l a c e m e n t  a r e  z e r o  a t  z e r o  
t i m e ,  we o b t a i n  i n s t e a d  o f  ( 3 ) - ( 6 )  t h e  f o l l o w i n g  e x p r e s s i o n s :  

dz ~ - - k  z W ( s ) = A s  ~ - - k  2�9 W ( s ) - - A q k  2 @ ( s ) - - ~ [ @ ( s + i m ) + @ ( s - - i m ) ]  , (7) 

i (d2 )o(,), k2: + P [ s O ( s ) - - W ( s ) ] =  A ~ d 2  ] " " 

At z = 0 we have 

I ) sZ(s)  = W(s) ,  . - ~ z  ~ + k ~ u~(~) = o, o (s) = Z ( s ) ,  (8) 

k A \ dz z dz 
At z = --H we have 

- - + ( k  ~ + k ) z ( s )  kn = ~ -  [z (s + ico) + Z (s - -  iaOl. (9) 

(s) = o, d W  (s) _ O, 0 (s) = O. ( I O )  
dz 

We consider the limiting cases of small and large Prandtl numbers, for example, liquid metals 
and oils, respectively. For simplicity, we consider large depths, i.e., H >> (a/pg) I/=. 

i. For small Prandtl numbers the second of Eqs. (7) takes the form 

d20 (s) k20 (s) = O. (1.  l )  
dz z 

Then using (8) and (10) we obtain 

where 

0 (s) = Z (s) exp (kz), 

W (s) -- kqZ2s {Z (s) - -  2-~1 [Z (s + i(o) + Z (s - -  ioJ)] } exp (kz) + C~ exp (kz) + C 2 exp (! k 2 ~-' Asz), 

( 1 . 2 )  

C~ = sZ (s) + ~ Z (s) + - -  Z (s) - -  [Z (s + i~o) + Z (s - -  i~o)1 , 
As 2 

2k ~ k2q { Z (s) _ ~_ [Z (s + ko) + Z (s _ io~)] i, . C., = - -  - T - -  Z (s) - - 7 F  

Substituting (1.2) into (91) and taking the inverse Laplace transform, we obtain the fol- 
lowing expression for ~(t) to an accuracy I/A and q: 

d2~ + 2 5  d~ q_(~2o_k~l~COScOt)~q_e~/~(r )dz  O, (1.3) 
dt 2 dt 

0 

where 
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6 _ 2k'-' 02 k a +  k + q 5q 
A ' ~-0= -~-, e l -  2 

For 6 = 0 this equation goes over into Mathieu's equation [4]. Solving (1.3) by the method 
of averaging [5] in the neighborhood of the main resonance, we obtain the following equation 
for the bounds of the first region of stability: 

n~ (Q~ - -  ~2/4)2 = 1, (1 .4 )  
4~ 2 (6 - -  2el) ~ o ~ (5 - -  2el) ~ 

from which it follows that parametric waves with the frequency ~/2 and wave number k arise 
on the surface of the liquid for 

~1~ 4 ~ ~  ( 1 2kq ~q ) .  (1 .5 )  

In this case waves with wave number 

are most easily excited, where 

q +O(q2), (1 .6 )  k = k  o 2(1 -4-3k~) 

/ + V +-~ 
~ /" o~ 2 1 e ~ / o~ 2 1 

ko 8 ~ + 64 8 27 64 

2. For  l a r g e  P r a n d t l  numbers  t h e  second  o f  Eqs.  (7) t a k e s  t he  form 

sO (s) = W (s). ( 2 .1 )  

S u b s t i t u t i n g  ( 2 . 1 )  i n t o  t h e  f i r s t  o f  gqs .  ( 7 ) ,  s o l v i n g  i t  w i t h  b o u n d a r y  c o n d i t i o n s  (8) and 
( 1 0 ) ,  t a k i n g  t h e  i n v e r s e  L a p l a c e  t r a n s f o r m ,  and n e g l e c t i n g  t e rms  o f  t h e  o r d e r  qq, we o b t a i n  
for the displacement of the surface from the equilibrium position an integrodifferential 
equation analogous to (1.3) with q and 2ex replacing ~ and e:. 

Then parametric waves with the frequency m/2 and wave number k appear on the surface for 

Thus, the stability of the system is decreased (q > O) or increased (q < O) depending 

on the conditions of heating. 

NOTATION 

x, y, z, Cartesian coordinates; t, time; m, frequency; a, amplitude of vibration; 0, 
density of liquid; g, acceleration due to gravity; v, coefficient of kinematic viscosity; 
B, volume coefficient of expansion; X, thermal diffusivity; q, qx, dimensionless amplitudes 
of modulation; ~ = {u, v, w}, velocity vector; T, Co, &, temperatures; P, pressure; G, tem- 
perature gradient; h, H, depth of layer; ~, displacement of surface from equilibrium posi- 
tion; P, Prandtl number; A, q, small parameters; 8, e, dissipative parameters; kj, wave num- 
ber along j-th axis; Z(s), @(s), W(s), Fourier-- Laplace transforms for the displacement of 
the surface from its equilibrium position, perturbations of the temperature, and of the z 
component of velocity; a, surface tension. 
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